Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Weighted Model Counting (1910.13530v2)

Published 22 Oct 2019 in quant-ph and cs.CC

Abstract: In Weighted Model Counting (WMC) we assign weights to Boolean literals and we want to compute the sum of the weights of the models of a Boolean function where the weight of a model is the product of the weights of its literals. WMC was shown to be particularly effective for performing inference in graphical models, with a complexity of $O(n2w)$ where $n$ is the number of variables and $w$ is the treewidth. In this paper, we propose a quantum algorithm for performing WMC, Quantum WMC (QWMC), that modifies the quantum model counting algorithm to take into account the weights. In turn, the model counting algorithm uses the algorithms of quantum search, phase estimation and Fourier transform. In the black box model of computation, where we can only query an oracle for evaluating the Boolean function given an assignment, QWMC solves the problem approximately with a complexity of $\Theta(2{\frac{n}{2}})$ oracle calls while classically the best complexity is $\Theta(2n)$, thus achieving a quadratic speedup.

Citations (1)

Summary

We haven't generated a summary for this paper yet.