Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Parametric Interpolation Framework for Scalar Conservation Laws (1910.13486v1)

Published 29 Oct 2019 in math.NA and cs.NA

Abstract: In this paper we present a novel framework for obtaining high-order numerical methods for scalar conservation laws in one-space dimension for both the homogeneous and non-homogeneous case. The numerical schemes for these two settings are somewhat different in the presence of shocks, however at their core they both rely heavily on the solution curve being represented parametrically. By utilizing high-order parametric interpolation techniques we succeed to obtain fifth order accuracy ( in space ) everywhere in the computation domain, including the shock location itself. In the presence of source terms a slight modification is required, yet the spatial order is maintained but with an additional temporal error appearing. We provide a detailed discussion of a sample scheme for non-homogeneous problems which obtains fifth order in space and fourth order in time even in the presence of shocks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.