Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Four-Field Mixed Finite Element Methods for Incompressible Nonlinear Elasticity (1910.13485v1)

Published 24 Oct 2019 in math.NA and cs.NA

Abstract: We introduce conformal mixed finite element methods for $2$D and $3$D incompressible nonlinear elasticity in terms of displacement, displacement gradient, the first Piola-Kirchhoff stress tensor, and pressure, where finite elements for the $\mathrm{curl}$ and the $\mathrm{div}$ operators are used to discretize strain and stress, respectively. These choices of elements follow from the strain compatibility and the momentum balance law. Some inf-sup conditions are derived to study the stability of methods. By considering $96$ choices of simplicial finite elements of degree less than or equal to $2$ in $2$D and $3$D, we conclude that $28$ choices in $2$D and $6$ choices in $3$D satisfy these inf-sup conditions. The performance of stable finite element choices are numerically studied. Although the proposed methods are computationally more expensive than the standard two-field methods for incompressible elasticity, they are potentially useful for accurate approximations of strain and stress as they are independently computed in the solution process.

Summary

We haven't generated a summary for this paper yet.