Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Much Can We See? A Note on Quantifying Explainability of Machine Learning Models (1910.13376v2)

Published 29 Oct 2019 in stat.ML and cs.LG

Abstract: One of the most popular approaches to understanding feature effects of modern black box machine learning models are partial dependence plots (PDP). These plots are easy to understand but only able to visualize low order dependencies. The paper is about the question 'How much can we see?': A framework is developed to quantify the explainability of arbitrary machine learning models, i.e. up to what degree the visualization as given by a PDP is able to explain the predictions of the model. The result allows for a judgement whether an attempt to explain a black box model is sufficient or not.

Citations (6)

Summary

We haven't generated a summary for this paper yet.