Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Evaluation and Improvement of Document Set Expansion via Neural Positive-Unlabeled Learning (1910.13339v2)

Published 29 Oct 2019 in cs.CL and cs.LG

Abstract: We consider the situation in which a user has collected a small set of documents on a cohesive topic, and they want to retrieve additional documents on this topic from a large collection. Information Retrieval (IR) solutions treat the document set as a query, and look for similar documents in the collection. We propose to extend the IR approach by treating the problem as an instance of positive-unlabeled (PU) learning -- i.e., learning binary classifiers from only positive and unlabeled data, where the positive data corresponds to the query documents, and the unlabeled data is the results returned by the IR engine. Utilizing PU learning for text with big neural networks is a largely unexplored field. We discuss various challenges in applying PU learning to the setting, including an unknown class prior, extremely imbalanced data and large-scale accurate evaluation of models, and we propose solutions and empirically validate them. We demonstrate the effectiveness of the method using a series of experiments of retrieving PubMed abstracts adhering to fine-grained topics. We demonstrate improvements over the base IR solution and other baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alon Jacovi (26 papers)
  2. Gang Niu (125 papers)
  3. Yoav Goldberg (142 papers)
  4. Masashi Sugiyama (286 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.