Meta Distribution of SIR in the Internet of Things Modelled as a Euclidean Matching (1910.13216v3)
Abstract: The Poisson bipolar model considers user-base station pairs distributed at random on a flat domain, similar to matchsticks scattered onto a table. Though this is a simple and tractable setting in which to study dense networks, it doesn't properly characterise the stochastic geometry of user-base station interactions in some dense deployment scenarios, which may involve short and long range links, with some paired very nearby optimally, and others sub-optimally due to local crowding. Since the users will pair one-to-one with base stations, we can consider using the popular bipartite Euclidean matching (BEM) from spatial combinatorics, and study the corresponding (meta) distribution of the signal-to-interference-ratio (SIR). This provides detailed information about the proportion of links in the network meeting a target reliability constraint. We can then observe via comparison the impact of taking into account the variable/correlated short-range distances between the transmitter-receiver pairs on the communication statistics. We illustrate and quantify how the widely-accepted bipolar model fails to capture the network-wide reliability of communication in a typical ultra-dense setting based on a binomial point process. We also show how assuming a Gamma distribution for link distances may be a simple improvement on the bipolar model. Overall, BEMs provide good grounds for understanding more sophisticated pairing features in ultra-dense networks.