Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Characterization and Segmentation of Internet Path Delays with Infinite HMMs (1910.12714v1)

Published 28 Oct 2019 in cs.NI and stat.ML

Abstract: Round-Trip Times are one of the most commonly collected performance metrics in computer networks. Measurement platforms such as RIPE Atlas provide researchers and network operators with an unprecedented amount of historical Internet delay measurements. It would be very useful to automate the processing of these measurements (statistical characterization of paths performance, change detection, recognition of recurring patterns, etc.). Humans are pretty good at finding patterns in network measurements but it can be difficult to automate this to enable many time series being processed at the same time. In this article we introduce a new model, the HDP-HMM or infinite hidden Markov model, whose performance in trace segmentation is very close to human cognition. This is obtained at the cost of a greater complexity and the ambition of this article is to make the theory accessible to network monitoring and management researchers. We demonstrate that this model provides very accurate results on a labeled dataset and on RIPE Atlas and CAIDA MANIC data. This method has been implemented in Atlas and we introduce the publicly accessible Web API.

Citations (7)

Summary

We haven't generated a summary for this paper yet.