Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Joint Source-Channel Coding for Wireless Image Retrieval (1910.12703v1)

Published 28 Oct 2019 in cs.IT, cs.LG, eess.IV, and math.IT

Abstract: Motivated by surveillance applications with wireless cameras or drones, we consider the problem of image retrieval over a wireless channel. Conventional systems apply lossy compression on query images to reduce the data that must be transmitted over the bandwidth and power limited wireless link. We first note that reconstructing the original image is not needed for retrieval tasks; hence, we introduce a deep neutral network (DNN) based compression scheme targeting the retrieval task. Then, we completely remove the compression step, and propose another DNN-based communication scheme that directly maps the feature vectors to channel inputs. This joint source-channel coding (JSCC) approach not only improves the end-to-end accuracy, but also simplifies and speeds up the encoding operation which is highly beneficial for power and latency constrained IoT applications.

Citations (51)

Summary

We haven't generated a summary for this paper yet.