Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending Deep Knowledge Tracing: Inferring Interpretable Knowledge and Predicting Post-System Performance (1910.12597v2)

Published 14 Oct 2019 in cs.CY, cs.LG, and stat.ML

Abstract: Recent student knowledge modeling algorithms such as Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Networks (DKVMN) have been shown to produce accurate predictions of problem correctness within the same learning system. However, these algorithms do not attempt to directly infer student knowledge. In this paper we present an extension to these algorithms to also infer knowledge. We apply this extension to DKT and DKVMN, resulting in knowledge estimates that correlate better with a posttest than knowledge estimates from Bayesian Knowledge Tracing (BKT), an algorithm designed to infer knowledge, and another classic algorithm, Performance Factors Analysis (PFA). We also apply our extension to correctness predictions from BKT and PFA, finding that knowledge estimates produced with it correlate better with the posttest than BKT and PFA's standard knowledge estimates. These findings are significant since the primary aim of education is to prepare students for later experiences outside of the immediate learning activity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.