Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Model with Siamese Network for Viability and Necrosis Tumor Assessment in Osteosarcoma (1910.12513v2)

Published 28 Oct 2019 in physics.med-ph and eess.IV

Abstract: Osteosarcoma is the most common primary malignant bone tumor, which has high mortality due to easy lung metastasis. Osteosarcoma is a highly anaplastic, pleomorphic tumor with a variety of tumor cell morphology, including fusiform, oval, epithelial, lymphocyte like, small round, transparent cells, etc. Due to the multiple patterns of osteosarcoma cell morphology, pathologists have differences in the classification (viable tumor, necrotic tumor, non-tumor) of osteosarcoma. Therefore, automatic and accurate recognition algorithms can help pathologists greatly reduce time and improve diagnostic accuracy. In recent years, deep learning technology has made great progress in the field of natural images and medical images, and has achieved excellent results beyond human performance in classification. In this paper, we propose a Deep Model with Siamese Network (DS-Net) for automatic classification in Hematoxylin and Eosin (H&E) stained osteosarcoma histology images.

Citations (4)

Summary

We haven't generated a summary for this paper yet.