Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bin Encoding Training of a Spiking Neural Network-based Voice Activity Detection (1910.12459v1)

Published 28 Oct 2019 in eess.AS and cs.SD

Abstract: Advances of deep learning for Artificial Neural Networks(ANNs) have led to significant improvements in the performance of digital signal processing systems implemented on digital chips. Although recent progress in low-power chips is remarkable, neuromorphic chips that run Spiking Neural Networks (SNNs) based applications offer an even lower power consumption, as a consequence of the ensuing sparse spike-based coding scheme. In this work, we develop a SNN-based Voice Activity Detection (VAD) system that belongs to the building blocks of any audio and speech processing system. We propose to use the bin encoding, a novel method to convert log mel filterbank bins of single-time frames into spike patterns. We integrate the proposed scheme in a bilayer spiking architecture which was evaluated on the QUT-NOISE-TIMIT corpus. Our approach shows that SNNs enable an ultra low-power implementation of a VAD classifier that consumes only 3.8$\mu$W, while achieving state-of-the-art performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.