Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes (1910.12375v3)

Published 27 Oct 2019 in math.OC, cs.DS, math-ph, math.AG, math.MP, and math.RT

Abstract: This paper initiates a systematic development of a theory of non-commutative optimization. It aims to unify and generalize a growing body of work from the past few years which developed and analyzed algorithms for natural geodesically convex optimization problems on Riemannian manifolds that arise from the symmetries of non-commutative groups. These algorithms minimize the moment map (a non-commutative notion of the usual gradient) and test membership in null cones and moment polytopes (a vast class of polytopes, typically of exponential vertex and facet complexity, which arise from this a priori non-convex, non-linear setting). This setting captures a diverse set of problems in different areas of computer science, mathematics, and physics. Several of them were solved efficiently for the first time using non-commutative methods; the corresponding algorithms also lead to solutions of purely structural problems and to many new connections between disparate fields. In the spirit of standard convex optimization, we develop two general methods in the geodesic setting, a first order and a second order method, which respectively receive first and second order information on the "derivatives" of the function to be optimized. These in particular subsume all past results. The main technical work goes into identifying the key parameters of the underlying group actions which control convergence to the optimum in each of these methods. These non-commutative analogues of "smoothness" are far more complex and require significant algebraic and analytic machinery. Despite this complexity, the way in which these parameters control convergence in both methods is quite simple and elegant. We show how to bound these parameters and hence obtain efficient algorithms for null cone membership in several concrete situations. Our work points to intriguing open problems and suggests further research directions.

Citations (63)

Summary

We haven't generated a summary for this paper yet.