Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional sample covariance matrices with Curie-Weiss entries (1910.12332v1)

Published 27 Oct 2019 in math.PR

Abstract: We study the limiting spectral distribution of sample covariance matrices $XXT$, where $X$ are $p\times n$ random matrices with correlated entries, for the cases $p/n\to y\in [0,\infty)$. If $y>0$, we obtain the Mar\v{c}enko-Pastur distribution and in the case $y=0$ the semicircle distribution (after appropriate rescaling). The entries we consider are Curie-Weiss spins, which are correlated random signs, where the degree of the correlation is governed by an inverse temperature $\beta>0$. The model exhibits a phase transition at $\beta=1$. The correlation between any two entries decays at a rate of $O(np)$ for $\beta \in (0,1)$, $O(\sqrt{np}$) for $\beta=1$, and for $\beta>1$ the correlation does not vanish in the limit. In our proofs we use Stieltjes transforms and concentration of random quadratic forms.

Summary

We haven't generated a summary for this paper yet.