Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ViGGO: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation (1910.12129v1)

Published 26 Oct 2019 in cs.CL

Abstract: The uptake of deep learning in natural language generation (NLG) led to the release of both small and relatively large parallel corpora for training neural models. The existing data-to-text datasets are, however, aimed at task-oriented dialogue systems, and often thus limited in diversity and versatility. They are typically crowdsourced, with much of the noise left in them. Moreover, current neural NLG models do not take full advantage of large training data, and due to their strong generalizing properties produce sentences that look template-like regardless. We therefore present a new corpus of 7K samples, which (1) is clean despite being crowdsourced, (2) has utterances of 9 generalizable and conversational dialogue act types, making it more suitable for open-domain dialogue systems, and (3) explores the domain of video games, which is new to dialogue systems despite having excellent potential for supporting rich conversations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Juraj Juraska (17 papers)
  2. Kevin K. Bowden (16 papers)
  3. Marilyn Walker (40 papers)
Citations (39)