Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum-Product Networks for Robust Automatic Speaker Identification (1910.11969v3)

Published 26 Oct 2019 in eess.AS and cs.SD

Abstract: We introduce sum-product networks (SPNs) for robust speech processing through a simple robust automatic speaker identification (ASI) task. SPNs are deep probabilistic graphical models capable of answering multiple probabilistic queries. We show that SPNs are able to remain robust by using the marginal probability density function (PDF) of the spectral features that reliably represent speech. Though current SPN toolkits and learning algorithms are in their infancy, we aim to show that SPNs have the potential to become a useful tool for robust speech processing in the future. SPN speaker models are evaluated here on real-world non-stationary and coloured noise sources at multiple signal-to-noise ratio (SNR) levels. In terms of ASI accuracy, we find that SPN speaker models are more robust than two recent convolutional neural network (CNN)-based ASI systems. Additionally, SPN speaker models consist of significantly fewer parameters than their CNN-based counterparts. The results indicate that SPN speaker models could be a robust, parameter-efficient alternative for ASI. Additionally, this work demonstrates that SPNs have potential in related tasks, such as robust automatic speech recognition (ASR) and automatic speaker verification (ASV). Availability: The SPN ASI system is available at https://github.com/anicolson/SPN-ASI.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com