Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating a Large Covariance Matrix in Time-varying Factor Models (1910.11965v1)

Published 26 Oct 2019 in econ.EM

Abstract: This paper deals with the time-varying high dimensional covariance matrix estimation. We propose two covariance matrix estimators corresponding with a time-varying approximate factor model and a time-varying approximate characteristic-based factor model, respectively. The models allow the factor loadings, factor covariance matrix, and error covariance matrix to change smoothly over time. We study the rate of convergence of each estimator. Our simulation and empirical study indicate that time-varying covariance matrix estimators generally perform better than time-invariant covariance matrix estimators. Also, if characteristics are available that genuinely explain true loadings, the characteristics can be used to estimate loadings more precisely in finite samples; their helpfulness increases when loadings rapidly change.

Summary

We haven't generated a summary for this paper yet.