Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Doran-Harder-Thompson conjecture for toric complete intersections (1910.11955v3)

Published 25 Oct 2019 in math.AG

Abstract: Given a Tyurin degeneration of a Calabi-Yau complete intersection in a toric variety, we prove gluing formulas relating the generalized functional invariants, periods, and $I$-functions of the mirror Calabi-Yau family and those of the two mirror Landau-Ginzburg models. Our proof makes explicit the "gluing/splitting" of fibrations in the Doran-Harder-Thompson mirror conjecture. Our gluing formula implies an identity, obtained by composition with their respective mirror maps, that relates the absolute Gromov-Witten invariants for the Calabi-Yaus and relative Gromov-Witten invariants for the quasi-Fanos.

Summary

We haven't generated a summary for this paper yet.