Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Graph Attention Networks with Large Margin-based Constraints (1910.11945v1)

Published 25 Oct 2019 in cs.LG and stat.ML

Abstract: Graph Attention Networks (GATs) are the state-of-the-art neural architecture for representation learning with graphs. GATs learn attention functions that assign weights to nodes so that different nodes have different influences in the feature aggregation steps. In practice, however, induced attention functions are prone to over-fitting due to the increasing number of parameters and the lack of direct supervision on attention weights. GATs also suffer from over-smoothing at the decision boundary of nodes. Here we propose a framework to address their weaknesses via margin-based constraints on attention during training. We first theoretically demonstrate the over-smoothing behavior of GATs and then develop an approach using constraint on the attention weights according to the class boundary and feature aggregation pattern. Furthermore, to alleviate the over-fitting problem, we propose additional constraints on the graph structure. Extensive experiments and ablation studies on common benchmark datasets demonstrate the effectiveness of our method, which leads to significant improvements over the previous state-of-the-art graph attention methods on all datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guangtao Wang (20 papers)
  2. Rex Ying (90 papers)
  3. Jing Huang (140 papers)
  4. Jure Leskovec (233 papers)
Citations (75)