Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Task-Oriented Grasping from Human Activity Datasets (1910.11669v2)

Published 25 Oct 2019 in cs.RO and cs.CV

Abstract: We propose to leverage a real-world, human activity RGB dataset to teach a robot Task-Oriented Grasping (TOG). We develop a model that takes as input an RGB image and outputs a hand pose and configuration as well as an object pose and a shape. We follow the insight that jointly estimating hand and object poses increases accuracy compared to estimating these quantities independently of each other. Given the trained model, we process an RGB dataset to automatically obtain the data to train a TOG model. This model takes as input an object point cloud and outputs a suitable region for task-specific grasping. Our ablation study shows that training an object pose predictor with the hand pose information (and vice versa) is better than training without this information. Furthermore, our results on a real-world dataset show the applicability and competitiveness of our method over state-of-the-art. Experiments with a robot demonstrate that our method can allow a robot to preform TOG on novel objects.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mia Kokic (3 papers)
  2. Jeannette Bohg (109 papers)
  3. Danica Kragic (126 papers)
Citations (72)