Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function (1910.11602v2)

Published 25 Oct 2019 in math.ST and stat.TH

Abstract: In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on $\mu$ and volatility coefficient depends on $\sigma$, two unknown parameters. We suppose that the process is discretely observed at the instants (t n i)i=0,...,n with $\Delta$n = sup i=0,...,n--1 (t n i+1 -- t n i) $\rightarrow$ 0. We introduce an estimator of $\theta$ := ($\mu$, $\sigma$), based on a contrast function, which is asymptotically gaussian without requiring any conditions on the rate at which $\Delta$n $\rightarrow$ 0, assuming a finite jump activity. This extends earlier results where a condition on the step discretization was needed (see [13],[28]) or where only the estimation of the drift parameter was considered (see [2]). In general situations, our contrast function is not explicit and in practise one has to resort to some approximation. We propose explicit approximations of the contrast function, such that the estimation of $\theta$ is feasible under the condition that n$\Delta$ k n $\rightarrow$ 0 where k > 0 can be arbitrarily large. This extends the results obtained by Kessler [17] in the case of continuous processes. Efficient drift estimation, efficient volatility estimation,ergodic properties, high frequency data, L{\'e}vy-driven SDE, thresholding methods.

Summary

We haven't generated a summary for this paper yet.