2000 character limit reached
Parametrizing torsion pairs in derived categories (1910.11589v2)
Published 25 Oct 2019 in math.RT and math.AC
Abstract: We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in A, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.