Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The thresholding scheme for mean curvature flow and de Giorgi's ideas for minimizing movements (1910.11442v1)

Published 24 Oct 2019 in math.AP

Abstract: We consider the thresholding scheme and explore its connection to De Giorgi's ideas on gradient flows in metric spaces; here applied to mean curvature flow as the steepest descent of the interfacial area. The basis of our analysis is the observation by Esedoglu and the second author that thresholding can be interpreted as a minimizing movements scheme for an energy that approximates the interfacial area. De Giorgi's framework provides an optimal energy dissipation relation for the scheme in which we pass to the limit to derive a dissipation-based weak formulation of mean curvature flow. Although applicable in the general setting of arbitrary networks, here we restrict ourselves to the case of a single interface, which allows for a compact, self-contained presentation.

Summary

We haven't generated a summary for this paper yet.