Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Fake News with Weak Social Supervision (1910.11430v2)

Published 24 Oct 2019 in cs.SI and cs.IR

Abstract: Limited labeled data is becoming the largest bottleneck for supervised learning systems. This is especially the case for many real-world tasks where large scale annotated examples are either too expensive to acquire or unavailable due to privacy or data access constraints. Weak supervision has shown to be a good means to mitigate the scarcity of annotated data by leveraging weak labels or injecting constraints from heuristic rules and/or external knowledge sources. Social media has little labeled data but possesses unique characteristics that make it suitable for generating weak supervision, resulting in a new type of weak supervision, i.e., weak social supervision. In this article, we illustrate how various aspects of social media can be used to generate weak social supervision. Specifically, we use the recent research on fake news detection as the use case, where social engagements are abundant but annotated examples are scarce, to show that weak social supervision is effective when facing the little labeled data problem. This article opens the door for learning with weak social supervision for other emerging tasks.

Citations (27)

Summary

We haven't generated a summary for this paper yet.