Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for discrete multilinear spherical maximal functions (1910.11409v2)

Published 24 Oct 2019 in math.CA and math.NT

Abstract: We define a discrete version of the bilinear spherical maximal function, and show bilinear $l{p}(\mathbb{Z}d)\times l{q}(\mathbb{Z}d) \to l{r}(\mathbb{Z}d)$ bounds for $d \geq 3$, $\frac{1}{p} + \frac{1}{q} \geq \frac{1}{r}$, $r>\frac{d}{d-2}$ and $p,q\geq 1$. Due to interpolation, the key estimate is an $l{p}(\mathbb{Z}d)\times l{\infty}(\mathbb{Z}d) \to l{p}(\mathbb{Z}d)$ bound, which holds when $d \geq 3$, $p>\frac{d}{d-2}$. A key feature of our argument is the use of the circle method which allows us to decouple the dimension from the number of functions compared to the work of Cook.

Summary

We haven't generated a summary for this paper yet.