Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Molecular Graphs with Tiered Graph Autoencoders and Graph Prediction (1910.11390v2)

Published 24 Oct 2019 in cs.LG and q-bio.BM

Abstract: Tiered graph autoencoders provide the architecture and mechanisms for learning tiered latent representations and latent spaces for molecular graphs that explicitly represent and utilize groups (e.g., functional groups). This enables the utilization and exploration of tiered molecular latent spaces, either individually - the node (atom) tier, the group tier, or the graph (molecule) tier - or jointly, as well as navigation across the tiers. In this paper, we discuss the use of tiered graph autoencoders together with graph prediction for molecular graphs. We show features of molecular graphs used, and groups in molecular graphs identified for some sample molecules. We briefly review graph prediction and the QM9 dataset for background information, and discuss the use of tiered graph embeddings for graph prediction, particularly weighted group pooling. We find that functional groups and ring groups effectively capture and represent the chemical essence of molecular graphs (structures). Further, tiered graph autoencoders and graph prediction together provide effective, efficient and interpretable deep learning for molecular graphs, with the former providing unsupervised, transferable learning and the latter providing supervised, task-optimized learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.