Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Weakly Initial Algebra for Higher-Order Abstract Syntax in Cedille (1910.10851v1)

Published 24 Oct 2019 in cs.LO and cs.PL

Abstract: Cedille is a relatively recent tool based on a Curry-style pure type theory, without a primitive datatype system. Using novel techniques based on dependent intersection types, inductive datatypes with their induction principles are derived. One benefit of this approach is that it allows exploration of new or advanced forms of inductive datatypes. This paper reports work in progress on one such form, namely higher-order abstract syntax (HOAS). We consider the nature of HOAS in the setting of pure type theory, comparing with the traditional concept of environment models for lambda calculus. We see an alternative, based on what we term Kripke function-spaces, for which we can derive a weakly initial algebra in Cedille. Several examples are given using the encoding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.