Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing ASR pretraining for low-resource speech-to-text translation (1910.10762v2)

Published 23 Oct 2019 in cs.CL and eess.AS

Abstract: Previous work has shown that for low-resource source languages, automatic speech-to-text translation (AST) can be improved by pretraining an end-to-end model on automatic speech recognition (ASR) data from a high-resource language. However, it is not clear what factors --e.g., language relatedness or size of the pretraining data-- yield the biggest improvements, or whether pretraining can be effectively combined with other methods such as data augmentation. Here, we experiment with pretraining on datasets of varying sizes, including languages related and unrelated to the AST source language. We find that the best predictor of final AST performance is the word error rate of the pretrained ASR model, and that differences in ASR/AST performance correlate with how phonetic information is encoded in the later RNN layers of our model. We also show that pretraining and data augmentation yield complementary benefits for AST.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mihaela C. Stoian (2 papers)
  2. Sameer Bansal (7 papers)
  3. Sharon Goldwater (40 papers)
Citations (60)