Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perceptual-assisted Adversarial Adaptation for Choroid Segmentation in optical coherence tomography (1910.10316v1)

Published 23 Oct 2019 in eess.IV

Abstract: Accurate choroid segmentation in optical coherence tomography (OCT) image is vital because the choroid thickness is a major quantitative biomarker of many ocular diseases. Deep learning has shown its superiority in the segmentation of the choroid region but subjects to the performance degeneration caused by the domain discrepancies (e.g., noise level and distribution) among datasets obtained from the OCT devices of different manufacturers. In this paper, we present an unsupervised perceptual-assisted adversarial adaptation (PAAA) framework for efficiently segmenting the choroid area by narrowing the domain discrepancies between different domains. The adversarial adaptation module in the proposed framework encourages the prediction structure information of the target domain to be similar to that of the source domain. Besides, a perceptual loss is employed for matching their shape information (the curvatures of Bruch's membrane and choroid-sclera interface) which can result in a fine boundary prediction. The results of quantitative experiments show that the proposed PAAA segmentation framework outperforms other state-of-the-art methods.

Citations (18)

Summary

We haven't generated a summary for this paper yet.