Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sandwich semigroups in diagram categories (1910.10286v1)

Published 23 Oct 2019 in math.GR, math.CO, math.CT, and math.RA

Abstract: This paper concerns a number of diagram categories, namely the partition, planar partition, Brauer, partial Brauer, Motzkin and Temperley-Lieb categories. If $\mathcal K$ denotes any of these categories, and if $\sigma\in\mathcal K_{nm}$ is a fixed morphism, then an associative operation $\star_\sigma$ may be defined on $\mathcal K_{mn}$ by $\alpha\star_\sigma\beta=\alpha\sigma\beta$. The resulting semigroup $\mathcal K_{mn}\sigma=(\mathcal K_{mn},\star_\sigma)$ is called a sandwich semigroup. We conduct a thorough investigation of these sandwich semigroups, with an emphasis on structural and combinatorial properties such as Green's relations and preorders, regularity, stability, mid-identities, ideal structure, (products of) idempotents, and minimal generation. It turns out that the Brauer category has many remarkable properties not shared by any of the other diagram categories we study. Because of these unique properties, we may completely classify isomorphism classes of sandwich semigroups in the Brauer category, calculate the rank (smallest size of a generating set) of an arbitrary sandwich semigroup, enumerate Green's classes and idempotents, and calculate ranks (and idempotent ranks, where appropriate) of the regular subsemigroup and its ideals, as well as the idempotent-generated subsemigroup. Several illustrative examples are considered throughout, partly to demonstrate the sometimes-subtle differences between the various diagram categories.

Summary

We haven't generated a summary for this paper yet.