Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving singing voice separation with the Wave-U-Net using Minimum Hyperspherical Energy

Published 22 Oct 2019 in cs.LG, cs.SD, eess.AS, and stat.ML | (1910.10071v1)

Abstract: In recent years, deep learning has surpassed traditional approaches to the problem of singing voice separation. The Wave-U-Net is a recent deep network architecture that operates directly on the time domain. The standard Wave-U-Net is trained with data augmentation and early stopping to prevent overfitting. Minimum hyperspherical energy (MHE) regularization has recently proven to increase generalization in image classification problems by encouraging a diversified filter configuration. In this work, we apply MHE regularization to the 1D filters of the Wave-U-Net. We evaluated this approach for separating the vocal part from mixed music audio recordings on the MUSDB18 dataset. We found that adding MHE regularization to the loss function consistently improves singing voice separation, as measured in the Signal to Distortion Ratio on test recordings, leading to the current best time-domain system for singing voice extraction.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.