Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Neural Dialogue State Tracking (1910.09942v1)

Published 22 Oct 2019 in cs.CL

Abstract: A Dialogue State Tracker (DST) is a key component in a dialogue system aiming at estimating the beliefs of possible user goals at each dialogue turn. Most of the current DST trackers make use of recurrent neural networks and are based on complex architectures that manage several aspects of a dialogue, including the user utterance, the system actions, and the slot-value pairs defined in a domain ontology. However, the complexity of such neural architectures incurs into a considerable latency in the dialogue state prediction, which limits the deployments of the models in real-world applications, particularly when task scalability (i.e. amount of slots) is a crucial factor. In this paper, we propose an innovative neural model for dialogue state tracking, named Global encoder and Slot-Attentive decoders (G-SAT), which can predict the dialogue state with a very low latency time, while maintaining high-level performance. We report experiments on three different languages (English, Italian, and German) of the WoZ2.0 dataset, and show that the proposed approach provides competitive advantages over state-of-art DST systems, both in terms of accuracy and in terms of time complexity for predictions, being over 15 times faster than the other systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vevake Balaraman (6 papers)
  2. Bernardo Magnini (15 papers)
Citations (7)