Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of the Free Energy Principle to Estimation and Control (1910.09823v3)

Published 22 Oct 2019 in eess.SY and cs.SY

Abstract: Based on a generative model (GM) and beliefs over hidden states, the free energy principle (FEP) enables an agent to sense and act by minimizing a free energy bound on Bayesian surprise. Inclusion of prior beliefs in the GM about desired states leads to active inference (ActInf). In this work, we aim to reveal connections between ActInf and stochastic optimal control. We reveal that, in contrast to standard cost and constraint-based solutions, ActInf gives rise to a minimization problem that includes both an information-theoretic surprise term and a model-predictive control cost term. We further show under which conditions both methodologies yield the same solution for estimation and control. For a case with linear Gaussian dynamics and a quadratic cost, we illustrate the performance of ActInf under varying system parameters and compare to classical solutions for estimation and control.

Citations (11)

Summary

We haven't generated a summary for this paper yet.