Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KuroNet: Pre-Modern Japanese Kuzushiji Character Recognition with Deep Learning (1910.09433v1)

Published 21 Oct 2019 in cs.CV and cs.LG

Abstract: Kuzushiji, a cursive writing style, had been used in Japan for over a thousand years starting from the 8th century. Over 3 millions books on a diverse array of topics, such as literature, science, mathematics and even cooking are preserved. However, following a change to the Japanese writing system in 1900, Kuzushiji has not been included in regular school curricula. Therefore, most Japanese natives nowadays cannot read books written or printed just 150 years ago. Museums and libraries have invested a great deal of effort into creating digital copies of these historical documents as a safeguard against fires, earthquakes and tsunamis. The result has been datasets with hundreds of millions of photographs of historical documents which can only be read by a small number of specially trained experts. Thus there has been a great deal of interest in using Machine Learning to automatically recognize these historical texts and transcribe them into modern Japanese characters. Nevertheless, several challenges in Kuzushiji recognition have made the performance of existing systems extremely poor. To tackle these challenges, we propose KuroNet, a new end-to-end model which jointly recognizes an entire page of text by using a residual U-Net architecture which predicts the location and identity of all characters given a page of text (without any pre-processing). This allows the model to handle long range context, large vocabularies, and non-standardized character layouts. We demonstrate that our system is able to successfully recognize a large fraction of pre-modern Japanese documents, but also explore areas where our system is limited and suggest directions for future work.

Citations (43)

Summary

We haven't generated a summary for this paper yet.