Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Entity Coreference Resolution Review (1910.09329v2)

Published 21 Oct 2019 in cs.CL and cs.AI

Abstract: Entity Coreference Resolution is the task of resolving all mentions in a document that refer to the same real world entity and is considered as one of the most difficult tasks in natural language understanding. It is of great importance for downstream natural language processing tasks such as entity linking, machine translation, summarization, chatbots, etc. This work aims to give a detailed review of current progress on solving Coreference Resolution using neural-based approaches. It also provides a detailed appraisal of the datasets and evaluation metrics in the field, as well as the subtask of Pronoun Resolution that has seen various improvements in the recent years. We highlight the advantages and disadvantages of the approaches, the challenges of the task, the lack of agreed-upon standards in the task and propose a way to further expand the boundaries of the field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nikolaos Stylianou (4 papers)
  2. Ioannis Vlahavas (12 papers)
Citations (35)