Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All-Action Policy Gradient Methods: A Numerical Integration Approach (1910.09093v1)

Published 21 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: While often stated as an instance of the likelihood ratio trick [Rubinstein, 1989], the original policy gradient theorem [Sutton, 1999] involves an integral over the action space. When this integral can be computed, the resulting "all-action" estimator [Sutton, 2001] provides a conditioning effect [Bratley, 1987] reducing the variance significantly compared to the REINFORCE estimator [Williams, 1992]. In this paper, we adopt a numerical integration perspective to broaden the applicability of the all-action estimator to general spaces and to any function class for the policy or critic components, beyond the Gaussian case considered by [Ciosek, 2018]. In addition, we provide a new theoretical result on the effect of using a biased critic which offers more guidance than the previous "compatible features" condition of [Sutton, 1999]. We demonstrate the benefit of our approach in continuous control tasks with nonlinear function approximation. Our results show improved performance and sample efficiency.

Citations (9)

Summary

We haven't generated a summary for this paper yet.