Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantics for Global and Local Interpretation of Deep Neural Networks (1910.09085v1)

Published 21 Oct 2019 in cs.CV and cs.LG

Abstract: Deep neural networks (DNNs) with high expressiveness have achieved state-of-the-art performance in many tasks. However, their distributed feature representations are difficult to interpret semantically. In this work, human-interpretable semantic concepts are associated with vectors in feature space. The association process is mathematically formulated as an optimization problem. The semantic vectors obtained from the optimal solution are applied to interpret deep neural networks globally and locally. The global interpretations are useful to understand the knowledge learned by DNNs. The interpretation of local behaviors can help to understand individual decisions made by DNNs better. The empirical experiments demonstrate how to use identified semantics to interpret the existing DNNs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.