Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness of Delta Hedging in a Jump-Diffusion Model (1910.08946v2)

Published 20 Oct 2019 in q-fin.MF

Abstract: Suppose an investor aims at Delta hedging a European contingent claim $h(S(T))$ in a jump-diffusion model, but incorrectly specifies the stock price's volatility and jump sensitivity, so that any hedging strategy is calculated under a misspecified model. When does the erroneously computed strategy super-replicate the true claim in an appropriate sense? If the misspecified volatility and jump sensitivity dominate the true ones, we show that following the misspecified Delta strategy does super-replicate $h(S(T))$ in expectation among a wide collection of models. We also show that if a robust pricing operator with a whole class of models is used, the corresponding hedge is dominating the contingent claim under each model in expectation. Our results rely on proving stochastic flow properties of the jump-diffusion and the convexity of the value function. In the pure Poisson case, we establish that an overestimation of the jump sensitivity results in an almost sure one-sided hedge. Moreover, in general the misspecified price of the option dominates the true one if the volatility and the jump sensitivity are overestimated.

Summary

We haven't generated a summary for this paper yet.