Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Policy Learning for Malaria Control (1910.08926v1)

Published 20 Oct 2019 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Sequential decision making is a typical problem in reinforcement learning with plenty of algorithms to solve it. However, only a few of them can work effectively with a very small number of observations. In this report, we introduce the progress to learn the policy for Malaria Control as a Reinforcement Learning problem in the KDD Cup Challenge 2019 and propose diverse solutions to deal with the limited observations problem. We apply the Genetic Algorithm, Bayesian Optimization, Q-learning with sequence breaking to find the optimal policy for five years in a row with only 20 episodes/100 evaluations. We evaluate those algorithms and compare their performance with Random Search as a baseline. Among these algorithms, Q-Learning with sequence breaking has been submitted to the challenge and got ranked 7th in KDD Cup.

Citations (4)

Summary

We haven't generated a summary for this paper yet.