Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite-Horizon Optimal Control of Switched Boolean Control Networks with Average Cost: An Efficient Graph-Theoretical Approach (1910.08718v2)

Published 19 Oct 2019 in eess.SY, cs.SY, and math.OC

Abstract: This study investigates the infinite-horizon optimal control problem for switched Boolean control networks with an average-cost criterion. A primary challenge of this problem is the prohibitively high computational cost when dealing with large-scale networks. We attempt to develop a more efficient and scalable approach from a graph-theoretical perspective. First, a weighted directed graph structure called the $\textit{optimal state transition graph}$ (OSTG) is established, whose edges encode the optimal action for each one-step transition between states reachable from a given initial state subject to various constraints. Then, we reduce the infinite-horizon optimal control problem into a minimum mean cycle (MMC) problem in the OSTG. Finally, we develop a novel algorithm that can quickly find a particular MMC by resorting to Karp's algorithm in graph theory and construct afterward an optimal switching and control law based on state feedback. Time complexity analysis shows that our algorithm can outperform all existing methods in terms of time efficiency. A 16-node signaling network in leukemia is used as a benchmark to test its effectiveness. Results show that the proposed graph-theoretical approach is much more computationally efficient: it runs hundreds or even thousands of times faster than existing methods.

Citations (20)

Summary

We haven't generated a summary for this paper yet.