Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monodromy relations from twisted homology (1910.08514v2)

Published 18 Oct 2019 in hep-th

Abstract: We reformulate the monodromy relations of open-string scattering amplitudes as boundary terms of twisted homologies on the configuration spaces of Riemann surfaces of arbitrary genus. This allows us to write explicit linear relations involving loop integrands of open-string theories for any number of external particles and, for the first time, to arbitrary genus. In the non-planar sector, these relations contain seemingly unphysical contributions, which we argue clarify mismatches in previous literature. The text is mostly self-contained and presents a concise introduction to twisted homologies. As a result of this powerful formulation, we can propose estimates on the number of independent loop integrands based on Euler characteristics of the relevant configuration spaces, leading to a higher-genus generalization of the famous $(n-3)!$ result at genus zero.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com