Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Treatment for Coronary Artery Disease Patients: A Machine Learning Approach (1910.08483v1)

Published 18 Oct 2019 in stat.ML, cs.LG, and stat.AP

Abstract: Current clinical practice guidelines for managing Coronary Artery Disease (CAD) account for general cardiovascular risk factors. However, they do not present a framework that considers personalized patient-specific characteristics. Using the electronic health records of 21,460 patients, we created data-driven models for personalized CAD management that significantly improve health outcomes relative to the standard of care. We develop binary classifiers to detect whether a patient will experience an adverse event due to CAD within a 10-year time frame. Combining the patients' medical history and clinical examination results, we achieve 81.5% AUC. For each treatment, we also create a series of regression models that are based on different supervised machine learning algorithms. We are able to estimate with average R squared = 0.801 the time from diagnosis to a potential adverse event (TAE) and gain accurate approximations of the counterfactual treatment effects. Leveraging combinations of these models, we present ML4CAD, a novel personalized prescriptive algorithm. Considering the recommendations of multiple predictive models at once, ML4CAD identifies for every patient the therapy with the best expected outcome using a voting mechanism. We evaluate its performance by measuring the prescription effectiveness and robustness under alternative ground truths. We show that our methodology improves the expected TAE upon the current baseline by 24.11%, increasing it from 4.56 to 5.66 years. The algorithm performs particularly well for the male (24.3% improvement) and Hispanic (58.41% improvement) subpopulations. Finally, we create an interactive interface, providing physicians with an intuitive, accurate, readily implementable, and effective tool.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dimitris Bertsimas (96 papers)
  2. Agni Orfanoudaki (9 papers)
  3. Rory B. Weiner (1 paper)
Citations (35)

Summary

We haven't generated a summary for this paper yet.