Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Compression with Two-stage Multi-teacher Knowledge Distillation for Web Question Answering System (1910.08381v1)

Published 18 Oct 2019 in cs.CL

Abstract: Deep pre-training and fine-tuning models (such as BERT and OpenAI GPT) have demonstrated excellent results in question answering areas. However, due to the sheer amount of model parameters, the inference speed of these models is very slow. How to apply these complex models to real business scenarios becomes a challenging but practical problem. Previous model compression methods usually suffer from information loss during the model compression procedure, leading to inferior models compared with the original one. To tackle this challenge, we propose a Two-stage Multi-teacher Knowledge Distillation (TMKD for short) method for web Question Answering system. We first develop a general Q&A distillation task for student model pre-training, and further fine-tune this pre-trained student model with multi-teacher knowledge distillation on downstream tasks (like Web Q&A task, MNLI, SNLI, RTE tasks from GLUE), which effectively reduces the overfitting bias in individual teacher models, and transfers more general knowledge to the student model. The experiment results show that our method can significantly outperform the baseline methods and even achieve comparable results with the original teacher models, along with substantial speedup of model inference.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ze Yang (51 papers)
  2. Linjun Shou (53 papers)
  3. Ming Gong (246 papers)
  4. Wutao Lin (4 papers)
  5. Daxin Jiang (138 papers)
Citations (90)

Summary

We haven't generated a summary for this paper yet.