Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong ergodicity around countable products of countable equivalence relations (1910.08188v1)

Published 17 Oct 2019 in math.LO

Abstract: This paper deals with countable products of countable Borel equivalence relations and equivalence relations "just above" those in the Borel reducibility hierarchy. We show that if $E$ is strongly ergodic with respect to $\mu$ then $E\mathbb{N}$ is strongly ergodic with respect to $\mu\mathbb{N}$. We answer questions of Clemens and Coskey regarding their recently defined $\Gamma$-jump operations, in particular showing that the $\mathbb{Z}2$-jump of $E_\infty$ is strictly above the $\mathbb{Z}$-jump of $E_\infty$. We study a notion of equivalence relations which can be classified by infinite sequences of "definably countable sets". In particular, we define an interesting example of such equivalence relation which is strictly above $E_\infty\mathbb{N}$, strictly below $=+$, and is incomparable with the $\Gamma$-jumps of countable equivalence relations. We establish a characterization of strong ergodicity between Borel equivalence relations in terms of symmetric models. The proofs then rely on a fine analysis of the very weak choice principles "every sequence of $E$-classes admits a choice sequence", for various countable Borel equivalence relations $E$.

Summary

We haven't generated a summary for this paper yet.