Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An LSM-based Tuple Compaction Framework for Apache AsterixDB (Extended Version) (1910.08185v2)

Published 17 Oct 2019 in cs.DB

Abstract: Document database systems store self-describing semi-structured records, such as JSON, "as-is" without requiring the users to pre-define a schema. This provides users with the flexibility to change the structure of incoming records without worrying about taking the system offline or hindering the performance of currently running queries. However, the flexibility of such systems does not free. The large amount of redundancy in the records can introduce an unnecessary storage overhead and impact query performance. Our focus in this paper is to address the storage overhead issue by introducing a tuple compactor framework that infers and extracts the schema from self-describing semi-structured records during the data ingestion. As many prominent document stores, such as MongoDB and Couchbase, adopt Log Structured Merge (LSM) trees in their storage engines, our framework exploits LSM lifecycle events to piggyback the schema inference and extraction operations. We have implemented and empirically evaluated our approach to measure its impact on storage, data ingestion, and query performance in the context of Apache AsterixDB.

Citations (18)

Summary

We haven't generated a summary for this paper yet.