Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New proper orthogonal decomposition approximation theory for PDE solution data (1910.08174v2)

Published 17 Oct 2019 in math.NA and cs.NA

Abstract: In our previous work [Singler, SIAM J. Numer. Anal. 52 (2014), no. 2, 852-876], we considered the proper orthogonal decomposition (POD) of time varying PDE solution data taking values in two different Hilbert spaces. We considered various POD projections of the data and obtained new results concerning POD projection errors and error bounds for POD reduced order models of PDEs. In this work, we improve on our earlier results concerning POD projections by extending to a more general framework that allows for non-orthogonal POD projections and seminorms. We obtain new exact error formulas and convergence results for POD data approximation errors, and also prove new pointwise convergence results and error bounds for POD projections. We consider both the discrete and continuous cases of POD. We also apply our results to several example problems, and show how the new results improve on previous work.

Citations (9)

Summary

We haven't generated a summary for this paper yet.