Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Zero Duality Gap in View of Abstract Convexity (1910.08156v2)

Published 4 Oct 2019 in math.FA and math.OC

Abstract: Using tools provided by the theory of abstract convexity, we extend conditions for zero duality gap to the context of nonconvex and nonsmooth optimization. Mimicking the classical setting, an abstract convex function is the upper envelope of a family of abstract affine functions (being conventional vertical translations of the abstract linear functions). We establish new conditions for zero duality gap under no topological assumptions on the space of abstract linear functions. In particular, we prove that the zero duality gap property can be fully characterized in terms of an inclusion involving (abstract) $\varepsilon-$subdifferentials. This result is new even for the classical convex setting. Endowing the space of abstract linear functions with the topology of pointwise convergence, we extend several fundamental facts of functional/convex analysis. This includes (i) the classical Banach--Alaoglu--Bourbaki theorem (ii) the subdifferential sum rule, and (iii) a constraint qualification for zero duality gap which extends a fact established by Borwein, Burachik and Yao (2014) for the conventional convex case. As an application, we show with a specific example how our results can be exploited to show zero duality for a family of nonconvex, non-differentiable problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.