Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proposing a Model for Predicting Passenger Origin-Destination in Online Taxi-Hailing Systems (1910.08145v4)

Published 17 Oct 2019 in cs.LG, eess.SP, and stat.ML

Abstract: Due to the significance of transportation planning, traffic management, and dispatch optimization, predicting passenger origin-destination has emerged as a crucial requirement for intelligent transportation systems management. In this study, we present a model designed to forecast the origin and destination of travels within a specified time window. To derive meaningful travel flows, we employ K-means clustering in a four-dimensional space with a maximum cluster size constraint for origin and destination zones. Given the large number of clusters, we utilize non-negative matrix factorization to reduce the number of travel clusters. Furthermore, we implement a stacked recurrent neural network model to predict the travel count in each cluster. A comparison of our results with existing models reveals that our proposed model achieves a 5-7\% lower mean absolute percentage error (MAPE) for 1-hour time windows and a 14\% lower MAPE for 30-minute time windows.

Summary

We haven't generated a summary for this paper yet.