Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conformal Group Theory of Tensor Structures (1910.08099v1)

Published 17 Oct 2019 in hep-th

Abstract: The decomposition of correlation functions into conformal blocks is an indispensable tool in conformal field theory. For spinning correlators, non-trivial tensor structures are needed to mediate between the conformal blocks, which are functions of cross ratios only, and the correlation functions that depend on insertion points in the $d$-dimensional Euclidean space. Here we develop an entirely group theoretic approach to tensor structures, based on the Cartan decomposition of the conformal group. It provides us with a new universal formula for tensor structures and thereby a systematic derivation of crossing equations. Our approach applies to a `gauge' in which the conformal blocks are wave functions of Calogero-Sutherland models rather than solutions of the more standard Casimir equations. Through this ab initio construction of tensor structures we complete the Calogero-Sutherland approach to conformal correlators, at least for four-point functions of local operators in non-supersymmetric models. An extension to defects and superconformal symmetry is possible.

Summary

We haven't generated a summary for this paper yet.