Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusions on a space of interval partitions: Poisson-Dirichlet stationary distributions (1910.07626v1)

Published 16 Oct 2019 in math.PR

Abstract: We introduce diffusions on a space of interval partitions of the unit interval that are stationary with the Poisson-Dirichlet laws with parameters $(\alpha,0)$ and $(\alpha,\alpha)$. The construction has two steps. The first is a general construction of interval partition processes obtained previously, by decorating the jumps of a L\'evy process with independent excursions. Here, we focus on the second step, which requires explicit transition kernels and what we call pseudo-stationarity. This allows us to study processes obtained from the original construction via scaling and time-change. In a sequel paper, we establish connections to diffusions on decreasing sequences introduced by Ethier and Kurtz (1981) and Petrov (2009). The latter diffusions are continuum limits of up-down Markov chains on Chinese restaurant processes. Our construction is also a step towards resolving longstanding conjectures by Feng and Sun on measure-valued Poisson-Dirichlet diffusions, and by Aldous on a continuum-tree-valued diffusion.

Summary

We haven't generated a summary for this paper yet.