Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Learning for ECG-based Emotion Recognition (1910.07497v3)

Published 14 Oct 2019 in cs.LG, cs.AI, and eess.SP

Abstract: We present an electrocardiogram (ECG) -based emotion recognition system using self-supervised learning. Our proposed architecture consists of two main networks, a signal transformation recognition network and an emotion recognition network. First, unlabelled data are used to successfully train the former network to detect specific pre-determined signal transformations in the self-supervised learning step. Next, the weights of the convolutional layers of this network are transferred to the emotion recognition network, and two dense layers are trained in order to classify arousal and valence scores. We show that our self-supervised approach helps the model learn the ECG feature manifold required for emotion recognition, performing equal or better than the fully-supervised version of the model. Our proposed method outperforms the state-of-the-art in ECG-based emotion recognition with two publicly available datasets, SWELL and AMIGOS. Further analysis highlights the advantage of our self-supervised approach in requiring significantly less data to achieve acceptable results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pritam Sarkar (14 papers)
  2. Ali Etemad (118 papers)
Citations (90)